

Developing a Energy Efficient Policy Package for Textile Sector

Small and Medium Enterprises: Energy Efficiency Knowledge Sharing (SAMEEEKSHA) Platform – 20th Meeting

Background presentation

December 17, 2021

Overview

- Introduction
- Energy efficiency opportunities
- Barriers to improving energy efficiency
- Policy package

The project

Objectives

- Ensuring maximum impact in terms of energy savings (targeting the most relevant processes and improvement opportunities)
- Ensuring that the medium enterprises are the main focus (but not excluding small companies when relevant) and,
- Developing a strategy that can be easily scaled up

ENERGY

AGRICULTURE

Methodology

- Literature review and identification of typical clusters for survey
- Identification of energy efficiency opportunities and barriers based on interviews and surveys of stakeholders and textile companies
- Listing of multiple (additional) benefits of energy efficiency, and,
- Recommend policies for energy efficiency improvement

CLIMATE

HABITAT

Textile industry

- Accounts for 7% of industrial production, 12% of exports and provides huge employment
- High energy use, 15-20% of total production cost
- Sizable amount of industry is in the MSME sector, 95% of cloth produced by the sector, 2.8 million power looms
- Larger mills (> 3,000 toe) are covered under PAT scheme
- Energy mix: thermal 53%, electrical 47%
- Energy consumption: 10.35 Mtoe

ENERGY

AGRICULTURE ENVIRONMENT

IENT HABITAT

Focus on Spinning

Overview

- 3,000 spinning mills, installed capacity 50 million spindles
- Electrical energy 12-15% cost
- SEC range 5-7.6 kWh/kg
- Major energy consuming area are Ring frame machines and induction motors

Energy Efficiency Opportunities

- High speed ring frame machines
- Energy efficient (IE3/IE4) motors with flat belts
- Auto coner winding machines
- Invertor for broken end suction motor with transducers
- Chute feeding system for blow room

Potential percentage energy savings

Electrical saving potential

Focus on Weaving (Powerlooms)

Overview

- 2.8 million power looms, largely conventional/semi-automatic (mechanical shuttle looms), local make, low speed
- 0.15 are high speed automatic looms (shuttle less-air jet/water jet), imported

Energy Efficiency Opportunities

- High speed automatic looms, R&D to make high speed looms in India
- Energy efficient (IE3/IE4) motors
- Solar tubes for day lighting

• Electrical energy 5-10% cost

Potential percentage energy savings

Electrical saving potential

Focus on Wet Processing (Dyeing)

Overview

- Energy and water intensive, energy cost 16-20%, water consumption 50 lit/kg
- Main energy consuming areas:
 - Process: dyeing, stenter
 - Utilities: boiler, thermic fluid heater, ETP

Energy Efficiency Opportunities

- CHP System
- WHR from waste water in fabric dyeing
- PLC control in dyeing machines
- Energy efficient automatic stenters
- High efficiency pumps

Electrical saving potential

Potential percentage energy savings

Barriers to improving energy efficiency

Integrated Policy Package (IPP)

TAT RESOURCE SECURITY

Points for Discussion

1. Other opportunities to save energy?

2. Policies to promote energy efficiency?

Thank you

